

Development of a stable vitamin-A Rich Nutrient Peanut Butter for School age Children

J. Mulindwa¹., A.N. Kaaya, ¹., N. Puppala, ²., D..K. Okello³., M. Deom⁴., and B. Bravo-Ureta⁵

¹Makerere University, Kampala, Uganda.; ²New Mexico State University; ³National Semi Arid Resources Research Institute, Uganda; ⁴University of Georgia, Athens, GA – 30602;

⁵University of Connecticut, Storrs, CT 06269-1182

Objectives of the study

The study is aimed at enhancing the nutritional quality and stabilization of peanut butter to contribute to reduction of malnutrition levels in school-age children in Uganda

Specific objectives are;

- To develop a stable vitamin A rich peanut butter product
- To determine the nutritional composition of the developed peanut butter

Material and methods

All the work involved is being carried out in Food Technology & Nutrition laboratory and pilot plant.

Pilot work

- Orange-fleshed sweet potato (OFSP) was sliced and blanched. The steamed slices were dried at 55°C for 24 hours using electric dryer, and milled
- Peanuts were roasted in an oven at a temperature of 170°C for a period of 30 minutes, cooled and grinded using semi-batch grinder.
- Mixing of paste, OFSP and fat was done to produce a homogenized fortified stable peanut butter(Table 1)

Table 1. Different formulations of peanut butter

Formulation	Formulation 1 (F1)	Formulation 2 (F2)
Peanuts	80%	75%
OFSP flour	5%	15%
Fat (margarine)	15%	10%

Lab analysis for β-carotene

Analysis for β -carotene was done in OFSP flour and fortified peanut butter using method by HarvestPlus (2004). OFSP flour had 8638.889 μ g/100g. Results for β -carotene content of fortified peanut butter are presented in Table 2.

Table 2. β-carotene content of peanut butter

1581

Conclusion

Peanut butter fortified with OFSP has high values of pro vitamin-A, which can reduce vitamin –A deficiency in school age children for enhanced academic performance.

Discussion of preliminary results

Table 3. UN recommended dietary intakes of Vit A

lable 3. Of recommended dictary intakes of the A		
Human age	Basal (µ retinol equivalent)	Safe (µ retinol equivalent)
1-6 years	200	400
6-15 years	250-350	400-600

- Thermal processing arrests enzymatic activity which leads to deterioration during preparations and analysis.
- Some percentage of β-carotene is contributed by fat used to stabilize peanut butter as it is fortified with vitamin A.
- Formulation 1 gives fortified peanut butter within acceptable daily intake as compared to UN guide.
- Further study is to be carried out to determine acceptability of fortified peanut. Formulation 1 to be used on panel as it has beta- carotene within range.
- Some mold growth was observed, due to high dextrose in sweet potatoes and possible contamination during flour preparations.
- Results of the product show no separation due to fat which acts as a stabilizer.

We appreciate the United States Agency for International Development—Peanut Collaborative Research Support Program NMS-172 project for funding this research through University of Georgia ECG-A-00-070001-00.